Evolution of Prdm Genes in Animals: Insights from Comparative Genomics
نویسندگان
چکیده
Prdm genes encode transcription factors with a subtype of SET domain known as the PRDF1-RIZ (PR) homology domain and a variable number of zinc finger motifs. These genes are involved in a wide variety of functions during animal development. As most Prdm genes have been studied in vertebrates, especially in mice, little is known about the evolution of this gene family. We searched for Prdm genes in the fully sequenced genomes of 93 different species representative of all the main metazoan lineages. A total of 976 Prdm genes were identified in these species. The number of Prdm genes per species ranges from 2 to 19. To better understand how the Prdm gene family has evolved in metazoans, we performed phylogenetic analyses using this large set of identified Prdm genes. These analyses allowed us to define 14 different subfamilies of Prdm genes and to establish, through ancestral state reconstruction, that 11 of them are ancestral to bilaterian animals. Three additional subfamilies were acquired during early vertebrate evolution (Prdm5, Prdm11, and Prdm17). Several gene duplication and gene loss events were identified and mapped onto the metazoan phylogenetic tree. By studying a large number of nonmetazoan genomes, we confirmed that Prdm genes likely constitute a metazoan-specific gene family. Our data also suggest that Prdm genes originated before the diversification of animals through the association of a single ancestral SET domain encoding gene with one or several zinc finger encoding genes.
منابع مشابه
Comparative genomics of human stem cell factor (SCF)
Stem cell factor (SCF) is a critical protein with key roles in the cell such as hematopoiesis, gametogenesis and melanogenesis. In the present study a comparative analysis on nucleotide sequences of SCF was performed in Humanoids using bioinformatics tools including NCBI-BLAST, MEGA6, and JBrowse. Our analysis of nucleotide sequences to find closely evolved organisms with high similarity by NCB...
متن کاملThe African Turquoise Killifish Genome Provides Insights into Evolution and Genetic Architecture of Lifespan
Lifespan is a remarkably diverse trait ranging from a few days to several hundred years in nature, but the mechanisms underlying the evolution of lifespan differences remain elusive. Here we de novo assemble a reference genome for the naturally short-lived African turquoise killifish, providing a unique resource for comparative and experimental genomics. The identification of genes under positi...
متن کاملژنومیکس انگل ها
Genes carry instructions to make protein that affect body's cells and their physical activity. They also play an important role in the occurrence of various characteristics in the body. Recently, scientists in the new field of science known as genomics have studied the genetic instructions. Genomics deals with the discovery of all the sequences in the entire genome of organisms and is used to s...
متن کاملSex: Deviant Mating in Yeast
Recent comparative genomics and mutational studies of the genes regulating mating and meiosis in fungi provide new insights into not only the variability of the key genes, but also the plasticity of the regulatory circuitry in the evolution of mating systems.
متن کاملDecoding the molecular evolution of human cognition using comparative genomics.
Identification of genetic and molecular factors responsible for the specialized cognitive abilities of humans is expected to provide important insights into the mechanisms responsible for disorders of cognition such as autism, schizophrenia and Alzheimer's disease. Here, we discuss the use of comparative genomics for identifying salient genes and gene networks that may underlie cognition. We fo...
متن کامل